

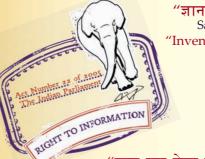
X

इंटरनेट

Disclosure to Promote the Right To Information

Whereas the Parliament of India has set out to provide a practical regime of right to information for citizens to secure access to information under the control of public authorities, in order to promote transparency and accountability in the working of every public authority, and whereas the attached publication of the Bureau of Indian Standards is of particular interest to the public, particularly disadvantaged communities and those engaged in the pursuit of education and knowledge, the attached public safety standard is made available to promote the timely dissemination of this information in an accurate manner to the public.

"जानने का अधिकार, जीने का अधिकार" Mazdoor Kisan Shakti Sangathan "The Right to Information, The Right to Live"


"पुराने को छोड नये के तरफ" Jawaharlal Nehru "Step Out From the Old to the New"

मानक

IS 9158 (1979): Cold-drawn high pressure fluid power cylinder tubes [MTD 19: Steel Tubes, Pipes abd Fittings]

Made Available By Public.Resource.Org

"ज्ञान से एक नये भारत का निर्माण″ Satyanarayan Gangaram Pitroda "Invent a New India Using Knowledge"

"ज्ञान एक ऐसा खजाना है जो कभी चुराया नहीं जा सकता Bhartrhari-Nītiśatakam "Knowledge is such a treasure which cannot be stolen"

BLANK PAGE

PROTECTED BY COPYRIGHT

Indian Standard

SPECIFICATION FOR COLD-DRAWN HIGH PRESSURE FLUID POWER CYLINDER TUBES

UDC 621'643'2-986 [669'14-462-124'2] : 621'8'032

Copyright 1979

INDIAN STANDARDS INSTITUTION MANAK BHAVAN, 9 BAHADUR SHAH ZAFAR MARG NEW DELHI 110002

September 1979

AMENDMENT NO. 1 NOVEMBER 1980

TO

IS:9158-1979 SPECIFICATION FOR COLD-DRAWN HIGH PRESSURE FLUID POWER CYLINDER TUBES

Corrigendum

[Page 7, clause 17.2(a), line 3] - Substitute '+ 0.10 mm' for '+ 0.10 mm'.

-

(SMDC 22)

Reprography Unit, ISI, New Delhi, India

Indian Standard SPECIFICATION FOR

COLD-DRAWN HIGH PRESSURE FLUID POWER CYLINDER TUBES

Steel Tubes, Pipes and Fittings Sectional Committee, SMDC 22

Chairman	Representing
Shri J. G Keswani	The Indian Scamless Metal Tubes Ltd, Bombay
Members	
Shri M. M. Aeron	Steel Authority of India Ltd, Rourkela Steel Plant, Rourkela
SHRI R. N. TANDON (Alternate	
SHRIK, K AHUJA SHRIPC, JOHARI (Alternate)	Indian Oil Corporation Ltd, Bombay
SHRI S. C. ANAND	Bharat Steel Tubes Ltd, New Delhi
SHRI M, P. MIITAL (Alternate	
ASSISTANT DIRFCTOR STANDARDS	Ministry of Railways
(Loco), Lucknow	
Shri S. N. Basu	Directorate General of Supplies & Disposals (Inspection Wing), New Delhi
SHRI T. N. UBOVEJA (Alternat	e)
SHRI D. P. BHATTACHARJEE	Export Inspection Council of India, Calcutta
SHRING ARORA (Allernate)	
SHRI B. C. CHARRABORTY	Oil & Natural Gas Commission, Dehra Dun
SHRI V. K. CHATURVIDI (Alt	ernate)
SHRIB B CHAKRAVERTI	Superintendence Co of India (P) Ltd, Calcutta
SHRIA K SHOME (Alternate)	
SHRIL, M. CHAUDHUI	Public Works Department (Public Health Branch), Government of Haryana, Chandigarh
SHRI K, K. GANDHI (Alternate	•)
SHHI JACOB JUHN	Kalinga Tubes Ltd, Calcutta
SHRIAK MITRA (Alternate)	
SHRIB KUMAR	Stewarts & Lloyds of India Ltd, Calcutta
SHBIT K, BASU (Alternate)	
SHRIK MUKHFRJEE	The Fertilizer Corporation of India Ltd, Sindri
SHRIRK SINHA (Alternate)	• •
SHRIP T SHANKARAN NAYAB	Central Boilers Board, New Delhi
SHRIG S GOSAL (Alternate)	

(Continued on page 2)

© Copyright 1979 INDIAN STANDARDS INSTITUTION

This publication is protected under the *Indian Capyright Act* (XIV of 1957) and reproduction in whole or in part by any means except with written permission of the publisher shall be deemed to be an infringement of copyright under the said Act.

(Continued from page 1)

Members	Representing
SHRI S. NEELAKANTAN	Zenith Steel Pipes and Industries Ltd, Khopoli
DR A. R KESKAR (Alternate) SHRI V. N. PANDEY	Indian Register of Shipping, Bombay
SHRI S. CHANDRA (Alternate) SHRI N. V. RAGHAVAN	Indian Tube Co Ltd, Jamshedpur
Shri D. Dutta (Alternate) Shri S. Ranganathan	Tube Products of India, Madras
SHRI T. SIVASHANKAB (Altern	
SHRI M. C. KESAVA RAO Shri M. Veerababu (Allerna	Hindustan Shipyard Ltd, Vishakhapatnam ile)
SHRI A, SRINIVABULU	Bharat Heavy Electricals Ltd, Tiruchchirappalli
Srri H. J. Thakar	Gujarat Steel Tubes Ltd, Ahmadabad
Shri C. R. Rama Rao,	Director General, ISI (Ex-officso Member)
Director (Struc & Met)	
(Secretary)	

Panel for Preparation of Specification for Cold-Drawn High Pressure Fluid Power Cylinder Tubes, SMDC 22 : P25 (Including Applications Like Shock Absorbers, Pneumatic Cylinders, Etc.)

Convents

Tube Products of India, Madras

Members

SHBI B. N. DAS

Veljain Hydrair Pvt Ltd, Hyderabad SHRI U. R. ACHARYA SHRI FRANCIS E. CORDEIRO (Alternate) SHRI S. C. ANAND Bharat Steel Tubes Ltd, New Delhi SHRI M. P. MITTAL (Alternate) Escorts Ltd, New Delhi SHEI S. DATTA SHRI P. K. SRIVASTAVA (Alternate) II PRAHLAD DABHOLKAR Vickers Sperry of India Ltd, Bombay SERI PRAHLAD DABHOLKAR Tata Engineering & Locomotive Co Ltd, Jamshedpur DB P. G. RENAVIKAR SHRI V. N. TODI SHRI V C. SHARMA (Alternate) Indian Tube Co Ltd, Jamshedpur SHRI A. G. WALAMBE Gabriels India Ltd, Bombay

Indian Standard

SPECIFICATION FOR COLD-DRAWN HIGH PRESSURE FLUID POWER CYLINDER TUBES

0. FOREWORD

0.1 This Indian Standard was adopted by the Indian Standards Institution on 21 May 1979, after the draft finalized by the Steel Tubes, Pipes and Fittings Sectional Committee had been approved by the Structural and Metals Division Council.

0.2 In fluid power system, power is transmitted and controlled through a fluid (liquid or gas) under pressure within an enclosed circuit. One component of such system is the fluid power cylinder.

0.3 In preparing this standard assistance has been derived from the following:

- ISO/DIS 4394 Fluid power systems and components cylinder barrels — Requirements for steel tubes with specially finished bores. International Organization for Standardization.
- BS: 5242: Part I: 1975 Specification for tubes for fluid power cylinder barrels: Part I Steel tubes with specially finished bores. British Standards Institution, London.

0.4 For the purpose of deciding whether a particular requirement of this standard is complied with, the final value, observed or calculated, expressing the result of a test or analysis, shall be rounded off in accordance with IS: 2-1960*. The number of significant places retained in the rounded off value should be the same as that of the specified value in this standard.

1. SCOPE

1.1 This standard covers the requirements of the following types of cold-drawn high pressure fluid power cylinder tubes (including applications like shock absorbers, pneumatic and hydraulic cylinders, etc.):

a) Cold-drawn electric resistance welded (CEW), and

b) Cold-drawn seamless tubes (CDS).

1.2 This standard does not include tubes with specially machined bores.

^{*}Rules for rounding off numerical values (revised).

IS: 9158 · 1979

SECTION I GENERAL REQUIREMENTS

2. SUPPLY OF MATERIAL

2.1 General requirements relating to the supply of material shall be as laid down in 18 1337-1967*.

3. WORKMANSHIP

3.1 The tubes shall be well finished, clean and free from harmful defects. The ends of the tubes shall be cut square and free from burrs.

3.2 Cylinder bore shall be absolutely free from pits, scratches, sliver lines, fin marks or any other surface irregularities which may effect the functioning However imperfections in scores and pits shall be permissible to the extent permitted in 10.1.

4. STRAIGHTNESS

4.1 Tubes shall not depart from a straightness by more than Class A (1 in 1000) and Class B (1.5 in 1000) of any measured length at the centre of the length. The class of tolerance shall be as agreed to between the purchaser and the manufacturer.

5. MECHANICAL TESTING

5.1 The manufacturer shall be responsible for making mechanical tests to ensure that the material and tubes comply with the requirements of this Indian Standard If desired by the purchaser, the manufacturer shall supply a certificate stating that the tubes comply with the specific requirements. Where the purchaser desires to witness the tests, this shall be stated in the enquiry or order. Where the purchaser requires tests specifically related to his particular order, the tests, shall be the subject of agreement between the purchaser and the manufacturer.

6. TESTING PROCEDURE

6.1 Tensile Test — Test pieces shall be taken from the ends of selected tubes and tested in accordance with IS : 1894-1972[†].

7. RETESTS

7.1 If a tube selected for the test fails in any one or more of the tests specified, two further tests of the same kind shall be made from the same or other tube at the manufacturer's discretion.

[•]General requirements for the supply of metallurgical materials (first revision). †Method for tensile testing of steel tubes (first revision).

7.2 If the repeat tests are satisfactory the tubes shall be accepted provided that in all respects they comply with the requirements of this standard.

8. NUMBER OF MECHANICAL TESTS

8.1 Where the purchaser requires tests specifically related to his order, the number of tests shall be at the rate of one set of tests per 1 000 metres for CDS tubes and 500 metres for CEW tubes or part thereof

9. TOLERANCE ON LENGTH

9.1 Tolerances on tubes ordered to cut lengths, when specified, shall meet the following requirements:

Length		Tolerance			
Over^					
mm	mm	mm			
0	2000	-0+3			
2 000	5 000	-0 + 5			
5 000	—	-0 + 10			

These tolerances include the possible out of squareness of the ends of the tubes

10. BORE SURFACE

10.1 Tubes with a drawn bore surface finish may exhibit surface imperfections subject to the following limits:

Outside Diameter			Thickness Range	Permissible Depth of Imperfection		
Over	Up to and Including	Over	Up to and Including	Scores	Pits	
mm	mm	mm	mm	μm	μ m	
	63	$\begin{cases} - \\ 2 & 6 \\ 6 & 3 \end{cases}$	2·6 6·3 —	25 25 25	40 50 65	
63	112	$\begin{cases} - \\ 3 \cdot 2 \\ 4 \cdot 5 \end{cases}$	3·2 4·5 —	40 40 50	65 75 100	
112 130 200	130 200		All All All	50 80 100	100 150 200	

11. SURFACE PROTECTION

11.1 The tubes shall be light oiled inside and outside to avoid rusting during transit and storage

12. PACKING

12.1 The special requirements for packing shall be agreed to between the supplier and the purchaser. Otherwise the supplier's normal practice shall be adopted.

13. METHOD OF ORDERING

13.1 While ordering the material, the purchaser shall furnish the information as given in Appendix A.

14. MARKING

14.1 Each tube may also be marked with the ISI Certification Mark.

NOTE — The use of the ISI Certification Mark is governed by the provisions of the Indian Standards Institution (Certification Marks) Act and the Rules and Regulations made thereunder. The ISI Mark on products covered by an Indian Standard conveys the assurance that they have been produced to comply with the requirements of that standard under a well-defined system of inspection, testing and quality control which is devised and supervised by ISI and operated by the producer. ISI marked products are also continuously checked by ISI for conformity to that standard as a further safeguard. Details of conditions under which a licence for the use of the ISI Certification Mark may be granted to manufacturers or processors, may be obtained from the Indian Standards Institution.

SECTION 2 SPECIFIC REQUIREMENTS FOR COLD-DRAWN ELECTRIC RESISTANCE WELDED TUBES

15. SCOPE

15.1 This section provides for the cold-drawn electric resistance welded tubes and covers the following grades:

$$\frac{\text{CEW} - 1}{\text{CEW} - 2}$$

The tubes shall comply in all respects with the requirements specified in Section 1 and with the relevant requirements of this section, and shall be subjected to both the chemical analysis and mechanical tests, unless it is stated on the order that only the chemical analysis or the mechanical tests are required.

16. CHEMICAL COMPOSITION

16.1 Sulphur and phosphorus shall not exceed 0.05 percent maximum each.

16.1.1 If the tubes are to be subjected to a subsequent welding operation, the steel analysis for all grades shall conform to the following requirements:

- a) the carbon content shall not exceed 0 25 percent;
- b) the carbon equivalent (CE), as defined by the formula:

$$CE = Percent C + \frac{Percent Mn}{6} + \frac{Percent Ni + Percent Cu}{15} + \frac{Percent Cr + Percent Mo + Percent V}{5}$$

shall be ≤ 0.50

17. DIMENSIONS AND TOLERANCES

17.1 Dimensions — Dimensions shall be as agreed to between the purchaser and the manufacturer

17.2 The tolerance on tubes shall be as under:

- a) Tolerance on Mean Inside Diameter and Outside Diameter No tube shall have a mean inside and outside diameter that departs from the specified values by more than + 0.10 mm for tubes up to and including 40 mm diameter with the addition, for larger tubes, of ± 0.025 mm for each 15 mm or part thereof over 40 mm diameter.
- b) Ovality Should not exceed 0 080 mm anywhere along the length of every tube.

18. MECHANICAL PROPERTIES

18.1 The mechanical properties obtained from test pieces selected and prepared as specified in Section 1 shall be within the limits specified in Table 1.

19. CRUSHING TEST

19.1 The test piece shall be crushed endwise until its height is reduced, without cracking, splitting or opening at the weld, by at least the specified percentage of the original height. The height of the test piece shall be about $1\frac{1}{2}$ times the outside diameter of the tube and the ends be cut square to the axis of the tube. The percentage reduction in height shall not be less than 25 percent.

TABL	E 1 MECHANICAL (Cl	PROPERTIES (lause 181)	OF CEW TUBES	
IS Reference Number	ULTIMATE TENSILE Stress, MPa	YIELD STRESS OR 0 2 PROOF STRESS, MPa	Elongation Percent on 5651/ A	BHN Value
	Min	Min	Min	Min
CEW 1	430	3 50	6	120
CEW 2	540	430	5	155
to obtain	- 0 2 percent proof str - A is the area of cros		•	s is difficult

NOTE 3 --- UTS and YS are mandatory, but BHN values are given for information only

 $1 \text{ MPa} = 1 \text{ N/mm}^2 = 0.1020 \text{ kg/mm}^3$

SECTION 3 SPECIFIC REQUIREMENT FOR COLD-DRAWN SEAMLESS STEEL TUBES

20. SCOPE

10

20.1 This section provides for the cold-drawn seamless steel tubes and covers the following grades:

CDS - 1 CDS - 2 CDS - 3

The tubes shall comply in all respects with the requirements specified in Section 1 and with the relevant requirements of this section, and shall be subjected to both the chemical analysis and mechanical tests, unless it is stated on the order that only the chemical analysis or the mechanical tests are required.

21. CHEMICAL COMPOSITION

21.1 The ladle analysis shall conform to the following limits:

15 Reference No.		Cent	Mn Percent		Sı Percent	S Percent	P Percent
	Min	Max	Min	Max	Max	Max	Max
CDS - 1		0.50				0.020	0.020
CDS — 2	0.10	0.30	0'40	1 20	0.32	0.020	0.020
CDS — 3	0.30	0•50	0.40	1.50	0.32	0 050	0.020

21.1.1 Where the tubes are subjected to subsequent welding, chemical composition shall be subject to agreement between the manufacturer and the purchaser

22. DIMENSIONS AND TOLERANCES

22.1 Preferred Sizes — Preferred sizes for high pressure fluid power cylinder barrels for cold finished steel tubes shall be as given in Appendix B.

22.2 The tolerance on tubes shall be as under

- a) Tolerance on Mean Outside Diameter No tube shall have a mean outside diameter that departs from the specified values by more than ± 0.10 mm for tubes up to and including 40 mm diameter with the addition, for larger tubes, of ± 0.025 mm for each 15 mm or part thereof over 40 mm diameter.
- b) Eccentricity Shall be restricted so that the minimum thickness 'a' min anywhere along the tube does not fall more than 10 percent below the minimum mean thickness implied by the diametral tolerances:

that is 'a'
$$Min \ge 0.9 \times \frac{D Min - d Max}{2}$$

where

D =outer diameter, and

d =internal diameter.

23. MECHANICAL PROPERTIES

23.1 The mechanical properties obtained from test pieces selected and prepared as specified in Section 1 shall be within the limits specified in Table 2.

TABI	E 2 MECHANICAL	PROPERTIES C	F CDS TUBES	
IS REFERENCE NUMBER	ULTIMATE TENSILE Strfss, MPa	YIFLD STRFSS OK 0 2 PERCENT PROOF STRESS, MPa	ELONGATION PERCENT ON $5.65\sqrt{A}$	BHN Value
	Min	Min	Min	Min
$\begin{array}{c} \text{CDS} - 1 \\ \text{CDS} - 2 \\ \text{CDS} - 3 \end{array}$	430 540 650	350 430 540	ճ 5 4	120 155 190
Note 1 difficult to	— 0.2 percent proof st obtain,	ress shall be obta	ined, if the yiel	d stress is

Note 2 - A is the area of cross section at gauge length,

Note 3 — UTS and YS are man latory, but BHN values are given for information only.

24. HYDRAULIC TEST

24.1 When required by the purchaser, each tube shall be tested, at the manufacturer's works and shall withstand a hydraulic pressure of 1.5 times the design pressure subject to a minimum of 7 N/mm^2 but not greater than the pressure calculated by the following formula:

$$P = \frac{2 \times s \times t}{D}$$

where

- P = test pressure,
- s = stress which shall be taken as 40 percent of the minimum tensile strength at room temperature,

t = thickness of the tube in mm, and

D = outside diameter of the tube in mm.

The pressure shall be maintained in each tube for at least 3 seconds and there shall be no sign of leakage during the test.

APPENDIX A

(Clause 13.1)

RECOMMENDED METHOD OF ORDERING

A-1. The purchaser should specify the following in his enquiry and order:

- a) The method of manufacture, that is, seamless or welded.
- b) The number of this Indian Standard, IS : 9158-1979.
- c) If the tubes are to be subjected to a welding operation.
- d) The grade of material as per 15.1 and 20.1.
- e) The bore of tube.
- f) The random length required.
- g) Any special requirements for protection or packing.

8 A P P E N D I X

(Clause 22.1)

PREFERRED SIZES FOR HIGH PRESSURE FLUID POWER CYLINDER BARRELS

B-1. The following are the preferred sizes for high pressure fluid power cylinder barrels made from cold finished steel tubes:

Il Up Size Thickness (mm) uding Honing Unding Honing usame, mm 1:5 2:0 2:5 3 0 3:5 5 0 7 10:1 12:5 $usame, mm$ 1:5 2:0 2:5 3 0 3:5 5 0 7 1 12:5 $usame, mm$ $usamee(mm)$		0 20 0											
Call Up Size Thickness (mm) Including Honing Allowance, mm Thickness (mm) 1:5 2:0 2:5 3:0 3:5 5:0 6:0 7:5 10:1 Outside Diameter (mm) 24:66 :: 31:78 35 3:0 3:5 5:0 6:0 7:5 10:1 24:66 :: 31:78 35 3:6 - 3:1 - 3:5 - 40 - 31:66 :: 31:78 35 3:6 - 3:1 - 4:7 - - 39:66 :: 39:78 - - 4:5 - 4:7 - - - 4:7 - - - 4:7 - - - 4:7 - - 3:5 - 4:0 - - 4:0 - - 4:0 - - 4:0 - - 4:0 - - 3:5 - 4:0 - - 4:0 - -		15 0		!									
Calt Up Size Thickness (mm Including Honing Allowance, mm Allowance, mm 1:5 2:0 2:5 3 0 3:5 5 0 7 Allowance, mm 1:5 2:0 2:5 3 0 3:5 5 0 7 5 Allowance, mm 1:5 2:0 2:5 3 0 3:5 5 0 7 5 Allowance, mm 1:5 2:0 2:5 3 0 3:5 5 0 7 5 24:66 to 24:6 to 31:78 35 36 - 31 - 35 - 40 31:66 31:78 35 36 - 42 - 47 39:66 39:78 - - 45 - 47 - 47 39:66 79:76 - - 45 - - 55 - 47 79:54 79<		12-5		1	ł	ł	75	288 28	105	195	150	185)
Calt Up Size Thickness (mm Including Honing Allowance, mm Allowance, mm 1:5 2:0 2:5 3 0 3:5 5 0 7 Allowance, mm 1:5 2:0 2:5 3 0 3:5 5 0 7 5 Allowance, mm 1:5 2:0 2:5 3 0 3:5 5 0 7 5 Allowance, mm 1:5 2:0 2:5 3 0 3:5 5 0 7 5 24:66 to 24:6 to 31:78 35 36 - 31 - 35 - 40 31:66 31:78 35 36 - 42 - 47 39:66 39:78 - - 45 - 47 - 47 39:66 79:76 - - 45 - - 55 - 47 79:54 79<		10.1		I	ł	I	70	. 83	100	120	145	180	
Call Up Size Including Honing Allowance, mm Allowance, mm 1:5 2:0 2:5 3 0 3:5 24:66 to 24:78 28 -1 31 -1 24:66 to 24:78 28 -1 31 -1 31:66 39:78 35 36 -1 31 -1 39:66 39:78 35 36 -1 31 -1 -1 45 46 -1 39:66 39:78 -1 -1 45 46 -1 $49:64$ $62:82$ -1 -25 56 -1 $79:54$ $79:76$ -1 -25 86 -1 $124'22$ 105 -1 -1 105 106 -1 132 $158:08$ 105 -1 -1 -1 -1 -1 -1 -1 -1 -1	(uu	7 5		40	47	55	65	76	95	115	140	175	
Call Up Size Including Honing Allowance, mm Allowance, mm 1:5 2:0 2:5 3 0 3:5 24:66 to 24:78 28 -1 31 -1 24:66 to 24:78 28 -1 31 -1 31:66 39:78 35 36 -1 31 -1 39:66 39:78 35 36 -1 31 -1 -1 45 46 -1 39:66 39:78 -1 -1 45 46 -1 $49:64$ $62:82$ -1 -25 56 -1 $79:54$ $79:76$ -1 -25 86 -1 $124'22$ 105 -1 -1 105 106 -1 132 $158:08$ 105 -1 -1 -1 -1 -1 -1 -1 -1 -1	ness (0.9		i	ł	l	1	75	92	112	137	١	
Call Up Size Including Honing Allowance, mm Allowance, mm Allowance, mm 1:5 24:66 1:5 24:66 31:66 31:78 32:66 31:78 32:66 31:78 32:66 31:78 33:66 39:78 1:5 24:66 1:50:78 28 1:50:70 1:50:50 1:50:50 1:50:50	Thuck	5 0	(u	35	42	50	60	73	06	110	135	170	
Call Up Size Including Honing Allowance, mm Allowance, mm Allowance, mm 1:5 24:66 1:5 24:66 31:66 31:78 32:66 31:78 32:66 31:78 32:66 31:78 33:66 39:78 1:5 24:66 1:50:78 28 1:50:70 1:50:50 1:50:50 1:50:50		3.5	er (m	1	I	1	ļ	1	J	j	132	167	
Call Up Size Including Honing Allowance, mm Allowance, mm Allowance, mm 1:5 24:66 1:5 24:66 31:66 31:78 32:66 31:78 32:66 31:78 32:66 31:78 33:66 39:78 1:5 24:66 1:50:78 28 1:50:70 1:50:50 1:50:50 1:50:50		3 0	Diamet	31	38	46	56	69	86	106	ł	ł	
Call Up Size Including Honing Allowance, mm Allowance, mm Allowance, mm 1:5 24:66 1:5 24:66 31:66 31:78 32:66 31:78 32:66 31:78 32:66 31:78 33:66 39:78 1:5 24:66 1:50:78 28 1:50:70 1:50:50 1:50:50 1:50:50		2.5	utside .	l	ł	45	55	68	85	105	I	ł	
Call Up Size Including Honing Allowance, mm 24'66 to 24.78 31'66 ,, 31'78 39'66 ,, 39'78 39'66 ,, 39'78 49'64 ,, 49'80 62'60 ,, 62'82 79'54 ,, 79'76 99'40 ,, 99'70 124'64		2.0	Ő	I	36	ł	1	I	ł	l		ł	
Call Up Si Including Ho Allowance, n 24.66 to 31.66 , 39.66 , 49.64 , 79.54 , 79.54 , 99.40 , 124.22 , 158.08 ,		1.5		28	35	i	(ſ	Í	[í	ł	
	 Size Honing mm			24.78	31.78	39-78	49.80	62.82	79.76	07.60	124.64	159-58	
	l Up ding I vance,			ţ	2	:	5	1	ŝ	2	6	ŝ	
25 H 50 40 32 125 100 125 100 125 H 50 50 50 40 50 H 50 50 50 H 50 H 5	Cal Inclue Allou	 		24.66	31-66	39-66	49.64	62.60	79.54	99-40	124-22	158.98	
	Bore	uu		25	32	40	50	63	80	100	125	160	

IS : 9158 - 1979

INDIAN STANDARDS

ON

STEEL TUBES, PIPES AND FITTINGS

IS:

- 1161-1968 Steel tubes for structural purposes (second revision)
- 1239 (Part I)-1973 Mild steel tubes, tubulars and other wrought steel fittings: Part I Mild steel tubes (third revision)
- 1239 (Part II)-1969 Mild steel tubes, tubulars and other wrought steel fittings: Part II Mild steel tubulars and other wrought steel pipe fittings (second revision)
- 1894-1972 Method for tensile testing of steel tubes (first revision)
- 1914 (Parts I to IV)-1977 Carbon steel boiler tubes and superheater tubes (first revision)
- 1978-1971 Line pipe (first revision)
- 1979-1971 High test line pipe (first revision)
- 2039-1964 Steel tubes for bicycle and allied purposes
- 2328-1963 Method for flattening test on steel tubes
- 2329-1963 Method for bend test on steel tubes
- 2330-1963 Method for flanging test on steel tubes
- $2330^{-1}703$ Method for hanging test on stop (1005)
- 2335-1963 Method for drift expanding test on steel tubes
- 2416-1963 Boiler and superheater tubes for marine and naval purposes
- 2484-1979 Dimensions for steel tubes for bicycle purposes (first recision)
- 3074-1965 Steel tubes for automotive purposes
- 3589-1966 Electrically welded steel pipes for water, gas and sewage (200 to 2 000 mm nominal diameter)
- 3601-1966 Steel tubes for mechanical and general engineering purposes
- 3609-1966 Chrome molybdenum steel, seamless, boiler and superlieater tubes
- 4270-1967 Steel tubes used for water wells
- 4310-1967 Weldable steel pipe fittings for marine purposes
- 4516-1968 Elliptical mild steel tubes
- 4711-1974 Methods for sampling of steel pipes, tubes and fittings (first revision)
- 4712-1968 Dimensions for forged steel socket-welding fittings
- 4922-1968 Seamless steel tubes (suitable for welding) for aircraft purposes
- 4923-1968 Hollow steel sections for structural use
- 5429-1979 Dimensions for steel tubes for automotive purposes (first revision)
- 5433-1969 Oil well steel casing pipes and couplings
- 5504-1969 Spiral welded pipes
- 5929-1970 Inspection and testing procedure for circular steel tubes for aircraft purposes
- 6011-1970 Carbon steel tubes for use on board ships for pressure service
- 6286-1971 Seamless and welded steel pipe for sub-zero temperature service
- 6392-1971 Steel pipe flanges
- 6630-1972 Seamless ferrine alloy steel pipes for high temperature service
- 6631-1972 Steel pipes for hydraulic purposes
- 6647-1972 Drill pipes for use in oil or natural gas wells
- 6913-1973 Stainless steel tubes for the food and beverage industry
- 7138-1973 Steel tubes for furniture purposes
- 7174-1974 Carbon steel tubes for use on board ships for working pressures 0.7 to 1.7 N/mm³
- 8036-1976 Mild steel transformer cooling tubes
- 8119-1976 Copper brazed steel tubing

INTERNATIONAL SYSTEM OF UNITS (SI UNITS)

QUANTITY	Unit	SYMBOL	
Length	metre	m	
Mass	ki)ogram	kg	
Time	second	1	
Electric current	ampere	Α	
Thermodynamic temperature	kelvin	К	
Luminous intensity	candela	cd	
Amount of substance	mole	mol	
Supplementary Units			
QUANTITY	Unit	SYMBOL	
Plane angle	radian	rad	
Solid angle	steradian	şr	
Derived Units			
QUANTITY	Unit	Symbol	DEFINITION
Force	acwtop	N	$1 N \Rightarrow 1 \text{ kg.m/s}^{1}$
Energy	joule	j	i j⇔iN.m
Power	watt	W	1 W == 1 J/s
Flux	weber	Wb	l Wb == 1 V,s
Flux density	tesla	Т	l T == l Wb/m³
Frequency	bertz	H2	$i Hz = i c/s (s^{-i})$
Electric conductance	ыстері	8	1 S = 1 A/V
Electromotive force	volt	v	$I = V \approx 1 W/A$
Pressure, stress	pascal	Pa	1 Pa $= 1 \text{ N/m}^3$

INDIAN STANDARDS INSTITUTION

Manak Bhavan, 9 Bahadur Shah Zafar Marg, NEW DELHI 110002

	phone
BAY 400007 37	
UTTA 700072 23-	97 29 08 02 24 42
GALORE 560002 2 YAL 462003 6 BANESHWAR 751014 5 IDIGARH 160017 2 RABAD 500001 22 JR 302006 6 UR 208005 8	03 91 76 49 27 16 36 27 83 20 10 83 98 32 12 72 28 08 32 27
ļ	JR 302006 6 UR 208005 8 A 800013 6

Printed at Printograph. New Delhi, India